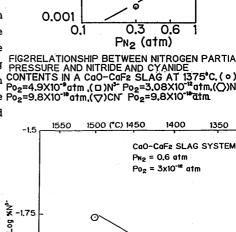
The University of Tokyo OE.Martinez and N.Sano

0.1

0.01

<u>Introduction</u>:Removal of nitrogen by slag treatment during iron and steelmaking operations requires fundamental knowledge of the solubility of nitrogen in liquid slags . At the same time this knowledge will enable the continuous casting process to protect the steel from nitrogen absorption by using appropriate slags . With this purpose experiments were conducted using a $CaO-CaF_2$ slag mainly at 14.5 % CaO . A wide range of oxygen partial pressure was used, from 3.1×10^{-6} atm to 1.23 x 10^{-13} atm with CO-CO₂-N₂ gas mixtures and from 3.1 x 10^{-17} atm to 7.5 x 10^{-20} atm with CO-Ar-N₂ gas mixtures . The influence of nitrogen partial pressure, temperature, lime content and oxygen partial pressure on nitrogen solubility was used in this work


Experimental: A CaO-CaF2 slag was put in a platinum, nickel, molybdenum or graphite crucible depending mainly on the oxygen potential of the experiment and placed in an electric

resistance furnace for equilibration for 5 to 24 hrs.,under a ${\rm CO-CO_2-N_2}$ atmosphere or ${\rm CO-Ar-N_2}$ atmosphere. Nitrogen-free CaO-CaF₂ slags were used in a range from 10 atm to 10^{-11} atm of oxygen partial pressure and nitrogen presaturated slags were used in a range from 10⁻¹¹atm to 10^{-13} atm of oxygen partial pressure and at carbon saturation . The main temperature used in this work was 1375°C .

Results and Discussion: Fig. 1 shows nitrogen content(as ${
m N}^{3-}$) dependence on oxygen partial pressure . The results indicate that from 10^{-6} atm to 10^{-11} atm of oxygen partial pressure there is no significant change in nitrogen content . If the oxygen partial pressure is lower than 10^{-11} atm, nitrogen content follows the direction of a straight line with a slope of -0.58 which is close to the estimation (-3/4) from the following

$$1/2 N_2 + 3/2 O^{2-} = N^{3-} + 3/4 O_2$$

In Fig. 2 nitrogen partial pressure dependence is shown for different oxygen partial pressures . For all of those there is agreement with the expected slope for the line, 1/2. Temperature dependence is shown in Fig Fig2Relationship Between Nitrogen Partial PRESSURE AND NITRIDE AND CYANIDE 3, according to which with higher temperatures nitrogen CONTENTS IN A CaO-CaF2 SLAG AT 1375°C. (\circ)N³- Po₂=4.9X10°atm.(\circ)N³- Po₂=3.08X10°atm.(\circ)N³- Content increases. The enthalpy change involving the Po₂=9.8X10°atm.(\circ)CN Po₂=9.8X10°atm. heat of nitrogen dissolution into a slag is estimated from these results as $\Delta H^{O} = 17,800$ cal/mole.

 \Box Morozov et al,CaO-Al2O3 slag ,1550°C,PN2=1 atm o This study,CaO-CaF2 slag,1375°C,PN2= 0.6 atm 0.1 ي 0.01 کي ا 0:001 10-13 10-10-K 10-1 Po₂ (atm)

FIG1 NITRIDE CONTENT AS A FUNCTION OF OXYGEN PARTIAL PRESSURE IN A CaO-CaF2 SLAG AT 1375°C

0.6

1400

6.0