(293) Effect of MgO and Al $_2\mathrm{O}_3$ on the Sulphide Capacity of CaO-CaF $_2$ -SiO $_2$ Fluxes

OK.Susaki*, M.Maeda** and N.Sano***

- (*) Department of Metallurgy, University of Tokyo (On leave of absence from COSIPA - Brazil)
- (**) Institute of Industrial Science, University of Tokyo
- (***) Faculty of Engineering, University of Tokyo

1. Introduction

Hot metal pretreatment is usually carried out in ladles or torpedo cars lined with aluminabased or magnesia-based refractories. Furthermore, in practical operation it is very common that some amount of blast furnace slag remains in the vessel even after slag-off operation. Therefore in industrial processes some degree of contamination of added fluxes for pretreatment is unavoidable. In the previous work $^{(1)}$, the sulphide capacity $(\text{C}_{\text{S}}2\text{--})$ of $\text{CaO-CaF}_2\text{-SiO}_2$ ternary fluxes were determined at temperatures ranging from 1200 to 1350°C showing that lime saturated compositions have outstanding desulphurization capabilities.

In this work the influences of MgO and ${\rm Al}_2{\rm O}_3$ on the sulphide capacity of CaO-CaF2-SiO2 fluxes were investigated.

2. Experimental procedure

The method employed is the same as the previous work namely flux and molten silver were equilibrated under controlled atmosphere. The fundamental reaction and the equation for determining C_S2 - are expressed by (1) and (2).

$$[S] + (O^{2-}) = 1/2\{O_2\} + (S^{2-})$$
 ... (1)

$$C_S^{2-} = K.pO_2^{1/2}.%(S^{2-})/%[S]$$
 ... (2)

3. Results

Figure 1 shows the influence of partial substitution of CaO by MgO on $C_{\rm S}2$ - of the CaO-CaF₂-SiO₂ ternary flux (%MgO+%CaO=56). It is confirmed that MgO is weaker desulphurizer than CaO but its effect depends on the flux composition, especially on CaO/SiO₂ ratio. This can be seen by comparing Figure 1 with Figure 2 (flux with %MgO+%CaO=64). As can be seen $C_{\rm S}2$ - decreases with increasing MgO content and this is more pronounced at higher CaO-SiO₂ ratio.

The influence of ${\rm Al}_2{\rm O}_3$ on ${\rm C}_S{\rm 2-}$ of the same flux system is presented in Figure 3 indicating that ${\rm C}_S{\rm 2-}$ increases when silica is partially replaced by alumina (${\rm Ral}_2{\rm O}_3+{\rm Rsio}_2=14$). It can be concluded that with higly basic fluxes such as those investigated here ${\rm Al}_2{\rm O}_3$ is nearly as acidic as ${\rm SiO}_2$.

REFERENCE

 K.Susaki et al: Tetsu-to-Hagane, 73 (1987), S244

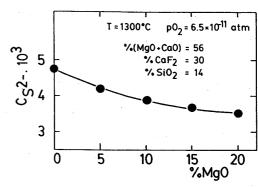


Fig.l Influence of MgO on sulphide capacity of CaO-CaF₂-SiO₂ flux (%CaO+%MgO = 56)

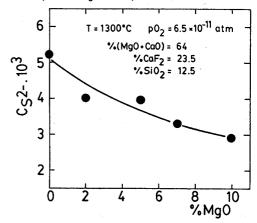


Fig.2 Effect of MgO on sulphide capacity of CaO-CaF₂-SiO₂ flux (%CaO+%MgO = 64)

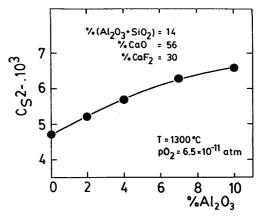


Fig.3 Influence of ${\rm Al}_2{\rm O}_3$ on sulphide capacity of ${\rm CaO\text{-}CaF}_2\text{-}{\rm SiO}_2$ flux