(373) On the Melting of Scrap and Sponge Iron (2)*1,2)
HANS ADOLF FRIEDRICHS*2, HEINRICH WILHELM GUDENAU*2, PETER K. RADEMACHER*2, YUJIRO UEDA*3

Professorship of Theoretical Metallurgy and Institute of Ferrous Metallurgy R.W. Technische Hochschule Aachen (*2)

1. Introduction

The melting of pure solids in their own melt can be described by simple formulas (1,2). In the more applied case of melting and dissolution in a multi-component-system heat—and mass transport are studied.

For the melting of sponge iron in a Fe-C alloy the influence of the carbon content on the transport phenomena is explained thermodynamically.

2. Some principals of melting

A solid that is immerged in a melt will form a shell.

If two samples of same mass and surface area but different heat conductivity are dipped into a melt, a thick shell will freeze on the sample with high heat conductivity. But actually this formation of a thick shell improves melting as can be seen at $t=t_2$ in Fig. 1.

3. Melting in a binary system

During the melting process in a binary system, heat and mass have to be transported. Assuming thermodynamic equilibrium at the phase boundary, no heat and mass transport inside the sample and corresponding heat and mass transfer, a connection between carbon concentration \mathbf{x}_1 and temperature \mathbf{T}_p at the phase boundary shown in Fig. 2 can be derived. \mathbf{x}_1 and \mathbf{T}_p are estimated from the liquidus line of the phase diagram. Furthermore it is assumed that the equilibrium state at the melting front is reached without any interference by the concentration $\mathbf{x}_{\mathbb{C}}$ of the solid2,3).

4. Heat- and mass transfer coefficients α and β of sponge iron in an Fe-C alloy

The melting time t_E of pressed iron powder samples of mass $M_{\rm C}$, surface $F_{\rm C}$ and initial temperature $T_{\rm C}$ has been reported to depend highly on the carbon content x_B of the bath with temperature T_B (Fig.3).

Using the formulas mentioned above, one can calculate the heat- and mass-transfer coefficients α and β . It can be seen that the heat- and mass-transport coefficients do not depend on the carbon content of the bath (Fig.4).

5. Conclusion

The great influence of the carbon on the melting time is therefore not a reason of kinetics, as some authors have assumed, but of thermodynamics.

References:

- 1) Friedrichs, H.A. et.al.: Tetsu-to-Hagané 68(1982), p. S-234
- Rademacher, P.K.: Dr.-Ing.thesis, RWTH Aachen (1982) to be published
- Friedrichs, H.A. et.al.:
 5th Germany-Japan Seminar (1982)
 Duesseldorf, VDEh, p.161/78
- 4) Sato, A. et.al: Tetsu-to-Hagané 64(1978)p.385

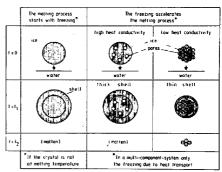


Fig.1: Some principles of melting

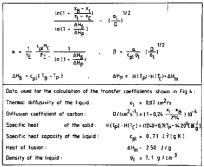


Fig.2: Formulas for the concentration x_1 and temperature $T_{\rm p}$ at the phase boundary and for the transfer coefficients α and β .

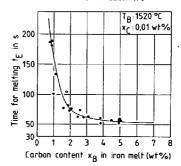


Fig.3: Reported values for the melting time $t_{\rm E}$ of pressed iron powder slabs (4)

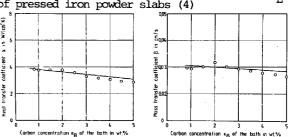


Fig.4: Calculated heat and mass transfer coefficients \propto and ß according to Fig.3 as functions of the carbon content \mathbf{x}_{B} of the bath